ATP-dependent minor groove recognition of TA base pairs is required for template melting by the E1 initiator protein.

نویسندگان

  • Stephen Schuck
  • Arne Stenlund
چکیده

Template melting is an essential step in the initiation of DNA replication, but the mechanism of template melting is unknown for any replicon. Here we demonstrate that melting of the bovine papillomavirus type 1 ori is a sequence-dependent process which relies on specific recognition of TA base pairs in the minor groove by the E1 initiator. We show that correct template melting is a prerequisite for the formation of a stable double hexamer with helicase activity and that ori mutants that fail to melt correctly are defective for ori unwinding and DNA replication in vivo. Our results also indicate that melting of the DNA is achieved by destabilization of the double helix along its length through multiple interactions with E1, each of which is responsible for melting of a few base pairs, resulting in the extensive melting that is required for initiation of DNA replication.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Common determinants in DNA melting and helicase-catalysed DNA unwinding by papillomavirus replication protein E1

E1 and T-antigen of the tumour viruses bovine papillomavirus (BPV-1) and Simian virus 40 (SV40) are the initiator proteins that recognize and melt their respective origins of replication in the initial phase of DNA replication. These proteins then assemble into processive hexameric helicases upon the single-stranded DNA that they create. In T-antigen, a characteristic loop and hairpin structure...

متن کامل

Transcription factor-dependent loading of the E1 initiator reveals modular assembly of the papillomavirus origin melting complex.

Replication of bovine papillomavirus type 1 DNA absolutely requires the viral transcription factor E2 as well as the initiator E1, although E1 alone has all the activities expected of an initiator protein. E1 assembles on the DNA in a stepwise fashion and undergoes a transition in activities from site-specific DNA-binding protein to mobile helicase. Complex assembly is assisted by the viral tra...

متن کامل

Adjacent residues in the E1 initiator beta-hairpin define different roles of the beta-hairpin in Ori melting, helicase loading, and helicase activity.

We have analyzed two residues in the helicase domain of the E1 initiator protein. These residues are part of a highly conserved structural motif, the beta-hairpin, which is present in the helicase domain of all papovavirus initiator proteins. These proteins are unique in their ability to transition from local template melting activity to unwinding. We demonstrate that the beta-hairpin has two f...

متن کامل

Control of DNA minor groove width and Fis protein binding by the purine 2-amino group

The width of the DNA minor groove varies with sequence and can be a major determinant of DNA shape recognition by proteins. For example, the minor groove within the center of the Fis-DNA complex narrows to about half the mean minor groove width of canonical B-form DNA to fit onto the protein surface. G/C base pairs within this segment, which is not contacted by the Fis protein, reduce binding a...

متن کامل

Microhelix aminoacylation by a class I tRNA synthetase. Non-conserved base pairs required for specificity.

Nucleotides in tRNAs that are conserved among isoacceptors are typically considered as candidates for tRNA synthetase recognition, with less importance attached to non-conserved nucleotides. Although the anticodon is an important contributor to the identity of methionine tRNAs, the class I methionine tRNA synthetase aminoacylates microhelices with high specificity. The microhelix substrates are...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of virology

دوره 81 7  شماره 

صفحات  -

تاریخ انتشار 2007